Newsroom / Press release

Quandela, the CNRS, Université Paris-Saclay and Université Paris Cité join forces to accelerate research and innovation in quantum photonics

On November 13th 2024, Quandela, the CNRS, Université Paris-Saclay, and Université Paris Cité inaugurated at the Centre for Nanoscience and Nanotechnology (CNRS/Université Paris-Saclay/Université Paric Cité) the QDlight associated research laboratory […]

  • Quantum photonics, or the art of controlling light in the quantum regime, should revolutionise data processing and security, with an impact across a range of industries.
  • Quandela, a European leader company for photonic quantum computing, is combining its know-how with that of the CNRS, Université Paris-Saclay, and Université Paris Cité in order to intensify scientific research and innovation in this field. 
  • The objective is to preserve French sovereignty in the design of photonic quantum computers, namely by increasing their computing power.

On November 13th 2024, Quandela, the CNRS, Université Paris-Saclay, and Université Paris Cité inaugurated at the Centre for Nanoscience and Nanotechnology (CNRS/Université Paris-Saclay/Université Paric Cité) the QDlight associated research laboratory focusing on research in quantum photonics, which is to say the art of controlling light in the quantum regime inside nanoscale devices. Over the course of six years, the teams will expand scientific cooperation with a view to developing next generation quantum light emitters, as well as their applications in quantum information technology to secure unprecedented computing power.

Quantum photonics, or the art of controlling light in the quantum regime

Quantum photonics, which has been developed since the late twentieth century, seeks to take advantage of the specifically quantum properties of light—especially single photons (emitted one by one)—for quantum computing and communications security. This discipline offers one of the most promising avenues for quantum computing (quantum computers and networks), as well as for inviolable key distribution protocols in encryption (quantum cryptography).

Quandela, a leading European company for photonic quantum computing that emerged from the Centre for Nanoscience and Nanotechnology (CNRS/Université Paris-Saclay/Université Paris Cité), has produced and marketed quantum light emitters in Europe since 2017–components that are indispensable to photonic quantum computing technology–and also launched the production of photonic quantum computers in 2023. These emitters, which consist of a quantum dot that behaves like an artificial atom in a semiconductor matrix, can generate a series of on-demand and indistinguishable single photons through a succession of laser pulses concentrating on this artificial atom.

In the optimal resonance and photon extraction conditions provided by the optical cavity in which it is positioned, these quantum dots can generate a photon flux with a rate of a few dozen megahertz, which efficiently implement quantum computing protocols on a photonic chip.

Toward unprecedented computing power and efficiency

This new associated research laboratory aims to develop emitters and protocols to generate new quantum states of light, with a view to creating a fault-tolerant photonic quantum computer1, and to demonstrating quantum communication protocols.

Pour ce faire, les travaux s’inscriront dans deux axes de recherche :

  • The project’s “optical” focus will first develop quantum photonic entanglement protocols,2 in order to create multi-partite entangled photon chains and graphs . These non-classical states of light are central to the “made-to-measure” quantum computing paradigm, which is the most promising framework for creating a universal quantum machine.
  • The “growth” research focus will concentrate on the quality of the quantum-dot-based photonic devices that will be produced within the Labcom. This will notably involve growing materials of very high purity–on which the “quantum purity” of photons depends–as well as increasing the reproducibility of photonic device production.

QDlight, pursuing close public-private research collaboration

This associated research laboratory (Labcom) is in line with the collaboration, since 2017, between Quandela and the research laboratory from which it emerged, the Centre for Nanoscience and Nanotechnology. This collaboration led to numerous interactions between researchers and engineers for basic research on the physics of semiconductor quantum dots, light-matter interaction in solid microcavities, protocols for the generation and measurement of quantum light, and for the first implementation of quantum protocols and computing.

The QDlight Labcom represents the next phase in conserving a global competitive head-start in semiconductor single-photon source technology, in addition to ensuring their constant improvement and using their exceptional properties in research and development activities.

The CNRS is thrilled by the creation of QDlight, which combines the excellence of teams from the C2N laboratory with the Quandela company, a European leader in photonic quantum computing that emerged from the academic world, and doubly contributes to positioning French public research in quantum technology at the highest global level”, explains Antoine Petit, the CNRS Chairman and CEO.

This research aims to preserve our global technological leadership in quantum photonics”, indicates Quandela co-founder and CEO Niccolo Somaschi.

It is a great pleasure to be here at C2N, a leading site for French research in nanoscience and nanotechnology, in order to inaugurate this new Labcom, a symbol of successful synergy between national research organisations, universities, and deeptech enterprises. It will combine high-level academic and technological expertise in order to overcome scientific and technological obstacles in this crucial field of quantum photonics, all while contributing to the training of students and young researchers”, says Camille Galap, the President of Université Paris-Saclay.

Université Paris Cité is proud to have contributed to the creation of this joint laboratory, which illustrates the capacity for collaboration between universities, NROs and the private sector. It is essential to combine our strengths and expertise for the benefit of research and innovation, particularly in a field as strategic as quantum technology”, explains Édouard Kaminski, President of Université Paris Cité.

“ We are proud of the creation of this associated research laboratory, which gives concrete form to years of a trusting relationship, and will help us support efforts to strengthen Quandela’s knowledge and expertise in quantum photonics alongside our partners”, emphasises Thierry Dauxois, Director of CNRS Physique.

ABOUT THE CNRS

A major player in basic research worldwide, the National Centre for Scientific Research (CNRS) is the only French organisation active in all scientific fields. Its unique position as a multi-specialist enables it to bring together all of the scientific disciplines in order to shed light on and understand the challenges of today’s world, in connection with public and socio-economic stakeholders. Together, the different sciences contribute to sustainable progress that benefits society as a whole. (www.cnrs.fr/en)

ABOUT UNIVERSITÉ PARIS-SACLAY

Université Paris-Saclay was born from the shared ambition of French universities, grandes écoles and national research organisations. As a leading university in Europe and the world, it covers the fields of science and engineering, life sciences and health, and humanities and social sciences. The university’s science policy closely intertwines research and innovation, incorporating both basic and applied science to tackle major societal challenges. Université Paris-Saclay offers a varied range of undergraduate to doctorate level degrees, including programmes with its grandes écoles, all of which are focused on achieving student success and employability. The university prepares students for an ever-changing world where the ability to think critically, remain agile and renew one’s skills are crucial. Université Paris-Saclay also offers a comprehensive range of lifelong learning courses. Located to the south of Paris, the university extends across a vast and rich local area. Its location strengthens both its international visibility and its close ties with its socio-economic partners (major companies, SMEs, start-ups, local authorities, charities). (www.universite-paris-saclay.fr/en/)

ABOUT UNIVERSITE PARIS CITÉ

At the heart of a global network of knowledge and innovation, Université Paris Cité is one of France’s leading multidisciplinary universities. Born in 2019 from the merger of the universities of Paris Diderot, Paris Descartes and Institut de physique du globe de Paris, the ambition of Université Paris Cité is to lead and develop an exceptional potential to meet the challenges of tomorrow’s society. It covers a wide range of disciplines, with one of the most comprehensive and ambitious educational offerings available in the world. Université Paris Cité is part of the incarnation of a world city, aware of its place and missions, open to youth and knowledge. It has 63,000 students, 7,500 teaching and research staff, 21 doctoral schools and 117 research units. u-paris.fr (u-paris.fr/en)

Explore More

Read more

EuroQCS-France: remote access to a 12-qubit Quandela system is now available for European users!

×

The EuroQCS-France consortium, led by GENCI and CEA, is pleased to announce that European researchers can now access a 12-qubit Quandela photonic quantum computing system remotely. This exciting development allows European users to begin programming and testing their applications on a real photonic quantum computer, months ahead of the anticipated deployment at TGCC (CEA’s computing center) of the on-premise Lucy system in the end of 2025. They can be supported by experts from a High-Level Support Team to port their applications onto the photonic quantum computer.

The EuroQCS-France consortium and the selection of Quandela as supplier by the EuroHPC Joint Undertaking (JU)

In 2024, EuroHPC JU selected a consortium formed by Quandela and its German partner attocube systems AG as the supplier of the photonic quantum computing technology as part of the EuroQCS-France initiative. This collaboration is set to pave the way for a new era in quantum computing across Europe, enhancing research capabilities and advancing the quantum ecosystem.

In November 2024, on the occasion of SC24, EuroQCS-France officially announced the provision of early remote access to a 6-qubit Quandela photonic quantum computer for the European open research community. Now, users will be able to run their code on a remote 12-qubit quantum computer, with the same design as the upcoming Lucy system. This provides a unique opportunity to engage with a photonic quantum computer, allowing open research communities to get hands-on experience before the Lucy system is fully installed and operational at TGCC in 2025.

Key Benefits for European Researchers

· Early Access: Open research communities can begin preparing their code using Perceval now, the Quandela programming and emulation environment deployed on the Joliot-Curie supercomputer, and run their applications on a remote 12-qubit photonic quantum computer similar to the targeted Lucy system.

· No Wait for Deployment: Users will not have to wait for the installation of Lucy to access a real quantum computing system, allowing them to start experimenting and testing their applications immediately.

· Expert Support: A High-Level Support Team will assist users in porting their applications onto the photonic quantum computer, ensuring that researchers can fully leverage the technology.

· Training Sessions: GENCI/CEA and Quandela will be offering specialized training on hybrid HPC-QC programming schemes, helping users prepare for the integration of Lucy with Joliot-Curie.

How to Access the Remote System

The process to access the remote Quandela system will be outlined by CEA, and interested researchers can apply for access through the designated channels. More details will be provided shortly.

Looking Ahead

EuroQCS-France is part of the broader European effort to build a diverse, pan-European hybrid HPC/QC infrastructure. Lucy, the 12-qubit photonic quantum computer, will soon join other cutting-edge quantum systems across Europe, each based on different hardware technologies. These systems include scalable superconducting qubits (Euro-Q-Exa), star-shaped superconducting qubits (LUMI-Q), trapped ions (EuroQCS-Poland), quantum annealing (EuroQCS-Spain), neutral atoms (EuroQCS-Italy), each system providing unique capabilities and research opportunities.

In the coming months, as the Lucy system’s deployment approaches, this early access will be crucial in ensuring that European researchers are well-prepared to take full advantage of the system’s capabilities.

GENCI/CEA and Quandela will be organizing training sessions on hybrid HPC-QC programming schemes leveraging photonic quantum computing to anticipate the integration of Lucy with Joliot-Curie.

About EuroQCS-France

EuroQCS-France is a consortium led by GENCI as Hosting Entity and CEA as Hosting Site, with the University Politechnica of Bucharest (UPB, Romania), Forschungszentrum Juelich (FZJ, Germany) and Irish Centre for High-End Computing (ICHEC, Ireland), selected by EuroHPC JU in 2022 as a result of the call for expression of interest EUROHPC-2022-CEI-QC-01.

EuroQCS-France aims to provide European open research communities with access to a photonic quantum computer coupled with the Joliot-Curie supercomputer, just like the 100-qubit Pasqal quantum simulator Ruby, acquired in the context of the HPCQS project.

Read more

Quandela announces a 100,000-fold reduction in the number of components needed for fault-tolerant calculations, a major breakthrough for photonic quantum computing 

×

_______________________________________________________________________________ 

Paris, February 7, 2025 – Quandela, the European leader in photonic quantum computing, announces a major breakthrough for the sector in a scientific paper1 describing a reduction by a factor of 100,000 in the number of components required for fault-tolerant calculations. Quandela’s hybrid approach, based on a technology that generates photonic qubits with unprecedented efficiency from artificial atoms (semiconductor quantum emitters), should enable the company to accelerate the scaling-up of its quantum computers. 

A photonic approach promising for error-correction and scaling challenges 

Fault-tolerant – error-free – quantum computing is crucial for the correct execution of the most impactful quantum algorithms, such as prime number factorization, linear system solving and chemical simulations. It is these algorithms that enable the most valuable use cases that “classical” computers cannot solve, notably in the energy, pharmaceutical, chemical and defense sectors. 

Among all quantum platforms, the photonic platform appears particularly promising for achieving fault tolerance, thanks to the unique ability of photons to :  

  • carry quantum information almost infinitely 
  • interconnect quantum processors via commercial optical fibers, as is the case with today’s largest network-connected computers.  

Interconnection between quantum processors is essential, in the long term, to extend the computing power of quantum computers – in a similar way to today’s networked supercomputers – whatever the platform in question. Photonic technology therefore inherently possesses the modularity that is absolutely essential for scaling up and implementing error-correction protocols. 

However, since photon loss is the main source of error in the photonic approach, the high performance of these quantum computers implies high optical transmission of the components, i.e. a high flow of photons through all the components. The big challenge is therefore to reduce the number of components (“resources”) in order to achieve the high optical transmission needed to manipulate and correct a large number of qubits, and thus achieve the high-impact calculations that outperform conventional computers. 

Quandela’s approach 100,000x less resource-intensive than other photonic competitors 

To meet this challenge, Quandela has just reported a groundbreaking scientific result that presents a method for reducing resource requirements by a factor of 100,000 compared with the photonics-only approach adopted and developed by other photonic quantum computing players in the USA and Canada.  

At the heart of this result lies the core technology of Quandela’s processors, based on semiconductor quantum emitters that generate photonic qubits with world-leading efficiency. Thanks to its hybrid approach, which uses these emitters both as photon generators and as qubits (by exploiting the spin of one of the emitter’s electrons), Quandela sets itself apart from other photonic competitors.  

Where a purely photonic approach would require around a million components to generate one logic qubit, the research team, led by Quandela’s Chief Research Officer Shane Mansfield, demonstrates that Quandela’s approach requires just 12, i.e. 100,000 (= 10^5 times ) less. This approach also greatly relaxes the optical transmission requirements of the components, and therefore the performance required for error correction. 

Significant reduction in energy consumption 

This considerable gain, which promises to reach the error-correction regime much more quickly, also makes it possible to drastically reduce the platform’s manufacturing costs and energy consumption. Quandela predicts a much lower power consumption than existing quantum platforms. In practice, while today’s large-scale high-performance computing centers consume around 20 MW, and cloud hyperscalers dedicated to AI require around 2 MW, Quandela’s largest quantum computer should keep its power consumption below 1MW. Quandela’s computers are therefore positioned as the solution for increasing the computing power needed by industry worldwide, without increasing energy consumption. 

“This breakthrough marks an important milestone for error-correcting computing with the photonic platform. By drastically reducing the resources required while maintaining the intrinsic advantages of the photonic approach, we are paving the way for the realistic industrialization of fault-tolerant quantum computing. Our unique hybrid approach demonstrates Quandela’s ability to significantly accelerate the scale-up of quantum computers, a crucial issue for the entire industry”, comments Niccolo Somaschi, co-founder and CEO of Quandela. 

Read more

Quandela Named Among Systematic Paris-Region’s 2024 Deep Tech Champions

×

Quandela has been selected as one of the five Deep Tech Champions 2024 by Systematic Paris-Region, France’s largest deep technology cluster. The company joins fellow champions Probabl (Open Source & AI), Scalinx (Semiconductors), Sekoia.io (Cybersecurity), and Uavia (Drones) in this prestigious recognition, which highlights Quandela’s significant contributions to quantum computing and strong growth trajectory.

The Champions label, now in its 13th year, recognizes innovative SMEs that demonstrate exceptional potential in strategic deep tech sectors. The selection acknowledges Quandela’s achievements in making quantum computing accessible to industry through ready-to-use quantum computers for datacenters, cloud-accessible quantum processors, and algorithm services.

“We are honored to receive this recognition from Systematic Paris-Region, which validates our pragmatic approach to quantum computing development and our commitment to meeting real industry needs,” said Valérian Giesz, CEO of Quandela. “Joining this select group of Champions who are driving innovation in strategic deep tech sectors reflects the dedication and expertise of our entire team.”

The jury, chaired by Fadwa Sube, particularly praised “the perfect alliance between world-class scientific excellence in quantum computing and the pragmatism and humility of Valérian Giesz and his team,” as well as the company’s step-by-step approach focused on customer needs.

Key achievements that led to this recognition include:
– The successful delivery of quantum computers to OVHcloud and Exaion in France and Canada
– A significant order from EuroHPC JU for a 12-qubit quantum computer, to be delivered by end of 2025
– The launch of the first quantum computer factory in Massy, with a production capacity of 4 quantum computers per year
– The establishment of the world’s first pilot line dedicated to the production of semiconductor-based spin-photon qubit devices

With 110 employees across France, Germany, Canada, and South Korea, Quandela continues to expand its international presence, supported by €65 million in funding raised since its creation in 2017. This recognition reinforces the company’s commitment to making quantum computing accessible to tackle complex industrial and societal challenges.

About Systematic Paris-Region
Systematic is the European Deep Tech hub that has been bringing together and coordinating a community of nearly 900 members since its creation in 2005, including nearly 600 startups, SMEs and mid-caps, 140 large groups, 140 academics, and an investors’ college. The Champions program has recognized 73 innovative companies since 2011, which have collectively raised over €1.7 billion and created more than 11,500 jobs across 35+ countries.