Newsroom / Press release

EuroQCS-France: remote access to a 12-qubit Quandela system is now available for European users!

The EuroQCS-France consortium, led by GENCI and CEA, is pleased to announce that European researchers can now access a 12-qubit Quandela photonic quantum computing system remotely. This exciting development allows […]

Quantum Computer

The EuroQCS-France consortium, led by GENCI and CEA, is pleased to announce that European researchers can now access a 12-qubit Quandela photonic quantum computing system remotely. This exciting development allows European users to begin programming and testing their applications on a real photonic quantum computer, months ahead of the anticipated deployment at TGCC (CEA’s computing center) of the on-premise Lucy system in the end of 2025. They can be supported by experts from a High-Level Support Team to port their applications onto the photonic quantum computer.

The EuroQCS-France consortium and the selection of Quandela as supplier by the EuroHPC Joint Undertaking (JU)

In 2024, EuroHPC JU selected a consortium formed by Quandela and its German partner attocube systems AG as the supplier of the photonic quantum computing technology as part of the EuroQCS-France initiative. This collaboration is set to pave the way for a new era in quantum computing across Europe, enhancing research capabilities and advancing the quantum ecosystem.

In November 2024, on the occasion of SC24, EuroQCS-France officially announced the provision of early remote access to a 6-qubit Quandela photonic quantum computer for the European open research community. Now, users will be able to run their code on a remote 12-qubit quantum computer, with the same design as the upcoming Lucy system. This provides a unique opportunity to engage with a photonic quantum computer, allowing open research communities to get hands-on experience before the Lucy system is fully installed and operational at TGCC in 2025.

Key Benefits for European Researchers

· Early Access: Open research communities can begin preparing their code using Perceval now, the Quandela programming and emulation environment deployed on the Joliot-Curie supercomputer, and run their applications on a remote 12-qubit photonic quantum computer similar to the targeted Lucy system.

· No Wait for Deployment: Users will not have to wait for the installation of Lucy to access a real quantum computing system, allowing them to start experimenting and testing their applications immediately.

· Expert Support: A High-Level Support Team will assist users in porting their applications onto the photonic quantum computer, ensuring that researchers can fully leverage the technology.

· Training Sessions: GENCI/CEA and Quandela will be offering specialized training on hybrid HPC-QC programming schemes, helping users prepare for the integration of Lucy with Joliot-Curie.

How to Access the Remote System

The process to access the remote Quandela system will be outlined by CEA, and interested researchers can apply for access through the designated channels. More details will be provided shortly.

Looking Ahead

EuroQCS-France is part of the broader European effort to build a diverse, pan-European hybrid HPC/QC infrastructure. Lucy, the 12-qubit photonic quantum computer, will soon join other cutting-edge quantum systems across Europe, each based on different hardware technologies. These systems include scalable superconducting qubits (Euro-Q-Exa), star-shaped superconducting qubits (LUMI-Q), trapped ions (EuroQCS-Poland), quantum annealing (EuroQCS-Spain), neutral atoms (EuroQCS-Italy), each system providing unique capabilities and research opportunities.

In the coming months, as the Lucy system’s deployment approaches, this early access will be crucial in ensuring that European researchers are well-prepared to take full advantage of the system’s capabilities.

GENCI/CEA and Quandela will be organizing training sessions on hybrid HPC-QC programming schemes leveraging photonic quantum computing to anticipate the integration of Lucy with Joliot-Curie.

About EuroQCS-France

EuroQCS-France is a consortium led by GENCI as Hosting Entity and CEA as Hosting Site, with the University Politechnica of Bucharest (UPB, Romania), Forschungszentrum Juelich (FZJ, Germany) and Irish Centre for High-End Computing (ICHEC, Ireland), selected by EuroHPC JU in 2022 as a result of the call for expression of interest EUROHPC-2022-CEI-QC-01.

EuroQCS-France aims to provide European open research communities with access to a photonic quantum computer coupled with the Joliot-Curie supercomputer, just like the 100-qubit Pasqal quantum simulator Ruby, acquired in the context of the HPCQS project.

Explore More

Read more

Quandela and OVHcloud join forces to democratize quantum machine learning with MerLin

×

At the international Adopt AI event in Paris, Quandela and OVHcloud announce a strategic initiative to bring closer AI and quantum computing thanks to MerLin, Quandela’s quantum machine learning environment. This collaboration will enable researchers and companies to prototype and simulate hybrid models on NVIDIA GPUs before testing them on Quandela’s photonic quantum computers, directly accessible from OVHcloud’s cloud platform.

Paris, Roubaix (France), November 25, 2025 – Quandela, European leader in photonic quantum computing, and OVHcloud, a major European cloud provider, announce that MerLin – the first programming language and environment dedicated to quantum machine learning – will be made available on OVHcloud’s platform starting mid-2026. This unified approach will accelerate the development of hybrid applications within a sovereign cloud environment.

A bridge between AI and quantum

Unveiled in summer 2025, MerLin lays the groundwork for a new generation of Quantum Machine Learning (QML) tools, integrated into standard AI frameworks such as PyTorch and scikit-learn.
Now, thanks to its integration into the OVHcloud platform, users will be able to design, simulate, and test their hybrid AI-Quantum neural networks in a unified cloud environment powered by NVIDIA GPUs, a shared partner of both companies.

This approach will accelerate the development of industrial quantum applications: users will first be able to run their simulations on GPUs, then test and validate their models on Quandela’s photonic quantum computers, hosted and operated within OVHcloud.

A clear quantum roadmap

As part of this partnership, OVHcloud has published its quantum roadmap, announcing that Quandela’s quantum computers will become available on its cloud platform in mid-2026. The first systems to be offered will be BELENOS, a 12-qubit photonic processor, and CANOPUS, a 24-qubit photonic processor.

This deployment will be a major milestone in integrating quantum computing into the cloud, paving the way for democratized and sovereign access to European quantum power.

This partnership with OVHcloud perfectly embodies our vision: to make quantum accessible and useful for AI experts. With MerLin, we provide a seamless environment – from GPU to quantum processor – allowing the exploration of new hybrid algorithms and accelerating the journey from concept to real-world application,” says Jean Senellart, Chief Product Officer at Quandela.

With MerLin, data scientists finally have an accessible framework that does not require quantum computing skills – an actual tool that democratizes its use for the most innovative function in companies: data science,” says Fanny Bouton, Quantum Lead and Product Manager at OVHcloud.

Toward a sovereign European quantum cloud

By combining their expertise – photonics and hybrid algorithms for Quandela, cloud and sovereign infrastructure for OVHcloud, GPU acceleration for NVIDIA – the two partners are laying the foundations of a competitive and open European quantum ecosystem. An ecosystem expected to foster the emergence of hybrid applications in fields such as cybersecurity, finance, energy, healthcare, and logistics.

Read more

Quandela Accelerates Quantum Spin-Photon Simulationby 20,000x with NVIDIA CUDA-Q

×

Quandela and NVIDIA have achieved a transformative 20,000x acceleration in quantum photonics simulation using NVIDIA CUDA-Q the GPU-accelerated platform for hybrid quantum-classical computing. This breakthrough dramatically reduces development cycles for quantum optical hardware from months to hours, advancing Quandela’s Spin–Photonic Quantum Computing (SPOQC) architecture for fault-tolerant quantum computing while also creating new opportunities for hybrid quantum–classical computing approaches that combine the strengths of both paradigms.

The advance builds on Quandela’s Zero-Photon Generator (ZPG)method, which reformulates complex photon-mediated dynamics into parallelizable master equations, CUDA-Q’s master equation solver enhanced in v0.12 with support for custom superoperators andbatched Liouvillian evolution, make it possible to run hundreds of open-system simulations simultaneously on a single NVIDIA Hopper GPU, reaching an acceleration of four orders of magnitude compared to existing simulation tools. Together, these advances turn previously intractable light–matter simulations into a real-time engineering tool.

Dr. Jean Senellart, Chief Product Officer of Quandela, said: “This collaboration with NVIDIA represents a paradigm shift in how we approach quantum hardware development. What once took weeks of computation can now be done in minutes, enabling us to explore thousands of design variations and accelerate our roadmap to fault-tolerant photonic quantum processors.

The collaboration demonstrates how GPU acceleration is now redefining quantum research. CUDA-Q v0.12.0 introduces the new superoperator and batching features developed through this joint effort, now publicly available for researchers and developers.

Sam Stanwyck, Group Product Manager for quantum computing at NVIDIA, commented: “Development of larger and more performant quantum hardware requires increasingly more complex simulations. Quandela’s work with CUDA-Q shows how GPU-accelerated simulations are compressing months of quantum hardware development into hours, and accelerating the development of useful accelerated quantum supercomputers.

This milestone sets a new benchmark for simulating distributed spin–photon quantum gates, supporting Quandela’s broader mission to build fault-tolerant photonic quantum processors. Detailed benchmarks and implementation resources are available in the Quandela technical blog.

Read more

Conclusions from the Franco-German Dialogue of Quantum Technology Players 2025

×

Quantum Technologies hold great economic potential. That is why it is in Europe’s interest to secure a leading position in their development and industrial application.

The French German Dialogue of Quantum Technology Players on September 23, 2025 in Paris and Massy (France), was organized by the Quantum Technology and Application Consortium (QUTAC), Le lab Quantique, Quandela, CEA, Fraunhofer, with support from the French embassy in Germany and the German embassy in France. The dialogue brought together more than 60 experts, managers and decision-makers from innovation, corporates, research and public authorities from France and Germany.

Following the dialogue, participants identified the following key challenges for building Europe’s quantum future:

  1. Use Cases: A concrete, industry-driven pipeline of end-to-end use cases should be developed, aligned with realistic expectations and a clear definition of what constitutes a “quantum advantage”.
  2. Success Stories: Successful examples that translate scientific achievements into businesses cases with tangible return on investment and operational impact should act as references across sectors.
  3. Benchmarking and management of expectations: A focus should be given to benchmarking our progress toward error-corrected and fault-tolerant systems. These will determine the long-term viability and sovereignty of European quantum technologies.
  4. European champions: Champions at the European level should be nurtured to build scale and reduce fragmentation, all while connecting national strengths, particularly in strategic domains.
  5. Trust / Intellectual Property: Intellectual property rules in both countries should be clarified and harmonized, while patents should continue to be incentivized.
  6. European strategies: Joint roadmaps and funding strategies should be developed across countries to avoid duplicating efforts and promote shared projects with long-term impact.
  7. Funding: Investment funds and private capital should be mobilised to stimulate industrial co-development and adoption of quantum solutions. Public funding programs should expand, and public authorities and funding agencies should streamline cross-border funding through a single-entry point.
  8. Talents: Talent training should be prioritised, for example by developing shared talent platforms and joint doctoral schools and study schemes.
  9. Gathering of ecosystems among France and Germany: Creative formats of collaboration across countries should be developed, such as cross invitations at meetings, events, technology fairs, dedicated learning expeditions, and others.
  10. Dialogue governance: The Franco-German dialogue of quantum technology players should be followed up and expanded. Governance mechanisms should be supported jointly by France and Germany to ensure continuity, coordination, accountability, alignment with national strategies and dissemination of results and increased impact.

To master these challenges, participants have formulated concrete actions. You can find these in the complete version of our conclusion document, which you can download here